Новости
« НазадОбзор реле напряжения — устройств защиты от недопустимых колебаний в питающей сети 18.05.2024 00:00Всегда ли годятся стабилизаторы и ИБППервое, что приходит на ум в разговоре на подобные темы, это стабилизаторы и источники бесперебойного питания. Но защита, обеспечиваемая этими двумя классами устройств, скорее сводится к нормирующей регулировке, то есть к приведению напряжения, подаваемого на нагрузку, к нормальному для нее значению или к допустимому диапазону (ИБП — в том числе при пропадании напряжения на входе). Достоинства подобных устройств защиты понятны, но не обходится и без недостатков. Самые очевидные — это немалые габариты, вес и цена, причём все эти три параметра при прочих равных тем больше, чем больше мощность нагрузки. Есть и другие минусы. Прежде всего, КПД современных стабилизаторов и ИБП хоть и велик, но всё же не дотягивает до 100%, и если при небольших мощностях это пренебрежимый фактор, то для нагрузок в многие сотни ватт с учетом постоянного режима работы потери становятся заметными, а в несколько киловатт — значительными. И дело не только в лишних деньгах, которые накручивает электросчетчик, но и в тепле, которое надо отводить как из корпуса самого защитного устройства (а это шум), так и из помещения, в котором он находится (а это расходы на кондиционирование). Кроме того, есть нагрузки, критичные к форме питающего напряжения — например, электродвигатели переменного тока в холодильниках и стиральных машинах, а также многие отопительные котлы с электронным управлением. А на выходе недорогих ИБП и стабилизаторов обычно бывает то, что их производители именуют «аппроксимированной (или модифицированной) синусоидой» — сигнал, по форме имеющий очень мало общего с нормальным синусом, который должен быть в сети переменного тока. верху форма питающего напряжения в соответствии с ГОСТ, внизу модифицированная синусоида Наконец, ряд нагрузок (те же двигатели, а также лазерные принтеры и МФУ) имеют значительные пусковые токи, которые в несколько раз, а то и на порядок, могут превосходить токи в рабочем режиме. Но ИБП категорически «не любят» подобного, да и многие стабилизаторы тоже, поэтому модель для работы с такими нагрузками приходится выбирать с значительным запасом по мощности, а это и лишние размеры, и вес, и главное — цена. Конечно, в целом ряде случаев описанные нами страшилки не столь существенны по сравнению с необходимостью бесперебойного питания важных электронных устройств. Но есть еще одна «напасть», перед которой стабилизатор или ИБП бессилен: это существенное повышение напряжения в питающей сети. Например, невнимательный электрик во время ремонтных работ перепутал ноль с одной из фаз, и вот уже в вашей квартире или офисе не 220, а 380 вольт; нечто подобное может произойти и при обрыве или отгорании нулевого провода, а из менее катастрофических причин можно назвать работу со сварочным трансформатором или отключение-включение других очень мощных электроприборов при их подключении к той же фазе, что и чувствительные потребители. ИБП и стабилизаторы способны защитить от подобного разве что ценой собственной «жизни», а их ремонт — это и деньги, и время, в течение которого важные нагрузки останутся без защиты. На этот случай существуют релейные защитные устройства (далее ЗУ) — реле напряжения, которые попросту отключают нагрузку, если напряжение в сети становится выше или ниже (а слишком низкие напряжения в отсутствие стабилизатора тоже могут быть опасны для «здоровья» нагрузки) определенного порога. Такие ЗУ компактны и недороги, их размер и цена гораздо меньше зависят от мощности нагрузки, они почти не потребляют энергии «для собственных нужд» и соответственно не выделяют много тепла, не шумят, не искажают форму питающего напряжения и в существенно большей степени лояльны к кратковременным перегрузкам. Их недостаток понятен: бесперебойного питания, равно как и нормирования напряжения, от них ждать не приходится. Зато они вполне могут обеспечить сохранность дорогого электронного оборудования, причем без существенных затрат. А при необходимости и желании ничто не мешает использовать их совместно с тем же ИБП, защищая одновременно и его. Реле напряжения: на что обращать внимание при выбореРеле напряжения можно разбить на две категории: индивидуальные, которые включаются между конкретной нагрузкой и розеткой, и групповые — они рассчитаны на бо́льшие токи нагрузки и устанавливаются в электрическом щитке. Подключение последних потребует вмешательства квалифицированного электрика, поэтому мы подробно рассмотрим образцы из первой категории, как наиболее доступной в использовании. Начнем с основных параметров. Диапазон рабочих напряжений самого реле напряжения. ЗУ при всех реально возможных напряжениях в сети, к которой оно подключено, должно оставаться в рабочем состоянии. К реально возможным мы относим не только 220—230 В плюс-минус 10 процентов, как того требует стандарт, но и 380 В (возможные причины для появления такого напряжения мы уже упоминали), а с учетом такого же допустимого отклонения реле напряжения должно работать в диапазоне минимум до 400, а лучше до 420 вольт. Конечно, могут происходить и совсем уж драматические события: так, импульсные напряжения, вызываемые разрядом молнии, могут достигать десятков и сотен киловольт. Но защита от подобного — это совершенно другая история, связанная совсем с другими затратами. Желательно, чтобы и при значительно заниженных напряжениях в питающей сети ЗУ тоже сохраняло работоспособность, помогая отслеживать происходящее. Поэтому сто́ит обращать внимание не только на верхний, но и на нижний предел диапазона рабочих напряжений, хотя это и не столь важно. Максимальный рабочий ток. Здесь надо учитывать не только и не столько рабочие токи подключенного оборудования, но прежде всего пусковые токи. Так, у поверхностного водяного насоса Grundfos MQ3-35 ток в установившемся режиме 4 А, а при запуске достигает 11,7 А, пусть и кратковременно; у погружных насосов (кроме вибрационных, типа «Малыш» или «Ручеек») разница еще существеннее. К сожалению, не для каждого устройства из числа возможных нагрузок можно найти такие данные. Есть и другое соображение на эту тему: при повышении питающего напряжения будет повышаться и ток, потребляемый многими типами нагрузок. Поэтому реле напряжения лучше выбирать с запасом по току и при этом помнить: если 16-амперное реле подключено, например, к удлинителю с предельным током 10 А, то максимум для нагрузки будет именно 10 ампер, а не 16. Время срабатывания. У реле оно не может быть нулевым, но для любых подключаемых устройств — бытовых, производственных или лабораторных, вы вряд ли найдете данные вроде «повышение питающего напряжения до 380 В допустимо в течение 0,1 с». То есть понятно одно: чем быстрее сработает реле напряжения, тем лучше. Причем если для срабатывания при понижении напряжения время может быть и побольше, то при повышении до опасного уровня нагрузку желательно отключать максимально быстро. Есть и еще ряд моментов, как второстепенных, так и довольно важных, но таких, ответы на которые трудно сформулировать в общем виде. Например, надежность. Исполнительным механизмом в подобных ЗУ является электромеханическое реле, контакты которого размыкаются в случае выхода напряжения в сети за установленные рамки и обесточивают нагрузку. Одним из важных параметров таких реле является расчетное количество срабатываний; оно будет зависеть как от внешних факторов — тока нагрузки и рабочего напряжения, так и от внутренних, прежде всего от материала, из которого изготовлены контакты. При коммутациях между контактами реле происходит искрение, из-за которого поверхность дешевого сплава будет покрываться нагаром, увеличивающими переходное сопротивление; если реле не герметизировано, поверхность контактов под воздействием атмосферы будет окисляться, что даст тот же эффект. Протекающий через увеличивающееся сопротивление ток будет вызывать всё больший нагрев, который вызовет дальнейшее ухудшение электрического контакта, что в дальнейшем может привести к оплавлению пластмассовых деталей реле и даже к возникновению пожара. И не надо думать, что если для какого-то реле заявлено 100 тысяч срабатываний, а для другого миллион, то практической разницы всё равно не будет, поскольку даже меньшего из этих значений и даже при десяти ежесуточных срабатываниях достигнуть получится лет за тридцать. Дело совсем в другом: большее расчетное значение при прочих равных свидетельствует о более качественных контактах. Другой момент, связанный с использованием релейных ЗУ: многие устройства «не любят» частых включений-выключений. Например, холодильники после выключения рекомендуется включать только через несколько минут, это написано в их инструкциях. Поэтому очень желательно, чтобы реле напряжения имело задержку включения на случай, если сбой в питающей сети был кратковременным. И совсем хорошо, если длительность задержки может устанавливаться пользователем, причем в широких пределах. А вот ширина регулировки диапазона изменения верхней и нижней границ срабатывания не столь уж важный параметр: вряд ли для какого-то реального устройства, подключаемого через ЗУ, потребуется слишком широкий (например, от 100 до 300 В) и особенно слишком узкий (от 210 до 230 В) диапазон. И максимальная дискретность установок тоже ни к чему: порог ровно в 253 В не потребуется ни для одного подключаемого устройства, вполне можно установить 250 или 255 — практической разницы для защиты не будет. Прочие аспекты лучше показать на примере конкретных образцов, чему и посвящена остальная часть обзора. Реле напряжения DigiTop с подключением в розеткуВсе образцы имеют одинаковую форму, отличаясь лишь размерами. В нижней части на тыльной стороне расположена вилка для подключения к розетке питающей сети, соосно с ней на лицевой части находится выходная розетка для нагрузок. У всех моделей и вход, и выход имеют заземляющие контакты и соответствуют Тип F (Schuko) по стандарту CEE 7/4 или C2 по ГОСТ 7396.1-89. Верхняя часть корпуса содержит органы управления и трехразрядный цифровой индикатор (светодиодный, семисегментный с точкой, красного свечения), который в нормальном режиме показывает напряжение в сети, при настройках — значения для установок, а после восстановления нормального состояния на входе может отображать время, оставшееся до подключения нагрузки; в некоторых моделях предусмотрено отображение и других величин или кодов ошибки. Есть также отдельный светодиод, обозначающий подачу напряжения на выход. Надо сказать, что подобная «геометрия» будет удобна не всегда, а только при подключении к розетке с горизонтальным расположением контактов. Если же контакты расположены вертикально или под углом 45 градусов, как часто бывает в колодках с несколькими розетками, то ЗУ окажется повернутым, и работать с его панелью управления будет неудобно. Кроме того, в многоместных колодках почти наверняка окажутся частично перекрытыми и соседние розетки. Всё это желательно учитывать при подключении. Особо отметим: все рассматриваемые устройства не обеспечивают защиты от коротких замыканий и значительных перегрузок, для подобных целей линия электропитания должна быть оснащена автоматическим выключателем. И еще: в период задержки включения после восстановления нормального состояния на входе все участники обзора продолжают отслеживание, и если напряжение вновь выйдет за установленные пределы, то нагрузка по истечении интервала задержки не подключится. Реле напряжения DigiTop VP-10AS и VP-16ASВыпускаются ООО «Росток-Электро», эта компания занимается разработкой и производством различного электрооборудования: помимо реле разных типов, в спектре продукции есть ограничители мощности, измерители (в том числе бескорпусные), переключатели, таймеры. Используется торговая марка DigiTop. Серия реле носит название V-protector. Список заявленных параметров:
Если смотреть с лицевой стороны, разницы между VP-10AS и VP-16AS нет никакой, отличаются они лишь наклейками на тыльной стороне. Это самые компактные изделия среди участников обзора, причем размер в данном случае имеет практическое значение: чем меньше длина корпуса, тем меньше получится рычаг при нажатии на его дальний край и тем меньше возможность механического повреждения самого ЗУ или розетки, к которой он подключен, при случайном сильном нажатии или толчке. А исключать вероятность такого воздействия нельзя. Отметим и хороший цифровой индикатор: на фотографиях это полностью передать трудно, но модели DigiTop отличаются от остальных более равномерным свечением сегментов, считывать показания очень удобно. Свою роль сыграло и наличие красной накладки-светофильтра, закрывающей индикатор. Яркость в темном помещении может показаться немного излишней, зато в хорошо освещенном месте цифры будут читаться нормально. Правее находится индикатор подключения выхода; здесь он красный, тогда как в остальных образцах зеленый. Корпус молочно-белого цвета, без выделенных цветом надписей. Выделяются только три управляющие кнопки, которые сделаны серыми, они расположены под индикатором. Дизайн самый бесхитростный, даже простецкий, но надо учесть, что это чисто утилитарный прибор, не претендующий на роль украшения, поэтому отсутствие изысканного экстерьера вполне простительно, особенно с учетом невысокой цены. Помимо основных функций и связанных с ними настроек (описывать их мы не будем: подробности есть в инструкции, которую можно скачать с сайта производителя), есть и дополнительные. Во-первых, это калибровка показаний вольтметра. Второе — значение напряжения, вызвавшего последнее срабатывание, сохраняется в памяти и может быть выведено на индикатор, это поможет определить, какие события происходили в сети вашей квартиры или офиса. Наконец, если вы запутались в установках, то их можно сбросить в заводские значения: нижний предел 170 В, верхний 250 В, задержка 15 секунд. Напомним: действующий ГОСТ 32144-2013 определяет напряжение с отклонением в пределах 10% в обе стороны как нормальное, то есть в сети «на законных основаниях» может быть не ровно 220, а от 198 до 242 вольт. Поэтому для очень многих нагрузок заводские установки DigiTop можно считать вполне приемлемыми, разве что для холодильника следует выставить задержку в 4-5 минут или более, если того требует его инструкция. |
Комментарии
Комментариев пока нет
Пожалуйста, авторизуйтесь, чтобы оставить комментарий.